Formula. Change of Base (logarithm) - Math
We can recognize logarithms as "fractions of exponential". Multiplying the same number with nominators and denominators, we can rewrite fractions with a different expression. Likewise, we rewrite logarithms with different expressions.
Formula. Change of Base (logarithm)
\[ \log_a{x}=\frac{\log_b{x}}{\log_b{a}} \]
Using that formula, you can change the base of the logarithm and add (or subtract) logarithms with different bases, such as $\log_2 3 + \log_4 5$. So the change of base logarithm formula is the base of calculating logarithms.
Remark
Before proving the formula, we should understand the below formula.
\[ (1) \quad a^{\log_a{x}}=x \] \[ (2) \quad \log_a{x^n}=n\log_a{x} \]
Proof
This proof is a bit technical.
\[ (\log_a{x})(\log_b{a})\\ =\log_b{a^{\log_a{x}}}\ \ \cdots\ (2)\\ =\log_b{x}\ \ \cdots\ (1) \]
Dividing by $\log_b{a}$, we get the formula.
\[ \log_a{x}=\frac{\log_b{x}}{\log_b{a}} \]
Note
Physics often uses the base 10 and data are usually plotted in log scale charts with the base 10.
指数・対数関数(数学Ⅱ)
-
指数・対数関数の公式|指数法則と対数法則と底の変換公式の証明
0
93015
-
指数関数は2次関数どころか10000次関数より「強い」
0
6380
-
指数関数の方程式と不等式(解き方と計算問題)
0
7045
-
-
-
2の0乗や3の0乗はいくつになりますか?
0
1184