数学B 数列(数学B)

等比数列とは?等比数列の意味と性質、一般項と和の公式をわかりやすく解説

等比数列とは、同じ数をかけてできる数列です。等差数列は同じ数を足していきますが、等比数列は同じ数をかけていきます。例えば

\[ 2,\ 6,\ 18,\ 54,\ \cdots \]

は初項 $2$、公比 $3$ の等比数列です。最初の数を初項といい、かけていく数を公比といいます。

\[ 6=2 \times 3 \\ 18=6 \times 3 \\ 54=18 \times 3 \\ \]

54 の次はいくつでしょうか? この等比数列は 3 ずつかけていくため、54 × 3 = 162 が次の数になります。

定義

等比数列を抽象的に考える

初項が a で、公比が r の等比数列を考えてください。

例

プリントにあるように a ar …と数が続きます。ここで r の右肩についている数(次数)を見てください。3 番目の数は r2 で、4 番目の数は r3 となっています。

つまり n 番目の次数は n-1 です。この法則を理解すると、10 番目の数や 100 番目の数も計算できるようになります。実際、その計算が高校数学の等比数列で一番大切なところです。

等比数列の一般項

一般項とは、n 番目の数を n で表したものです。等比数列の一般項(n 番目の数)は初項 a に r の n-1 乗をかけた数です。

一般項

(プリントの上だけを見てください)

等比数列の一般項

\[ a_{n}= a r^{n-1} \ (r \neq 1) \]

等比数列の和の公式

等比数列の和の公式は 2 つあります。

\[ S_n=an \ (r=1) \]

\[ S_{n}=a\dfrac {1-r^{n}}{1-r} \ (r \neq 1) \]

それぞれの公式をくわしく考えよう。

等比数列の和の公式(公比が 1 のとき)

まずは公比が 1 のとき。つまり $r=1$ のとき、等比数列の和 $S_n$ は

\[ S_n=an \]

となります。ただし $a$ は等比数列の初項。初項が $1$ のときは等比数列のすべての項が $a$ になるので、その和は $a$ を $n$ 倍した値です。

和の公式1

等比数列の和の公式(公比が 1 でないとき)

等比数列の公比が 1 でないとき。

和の公式2

等比数列の和の公式が正しいことを確かめる

実際の数列を用いて、等比数列の和の公式

\[ S_{n}=a\dfrac {1-r^{n}}{1-r} \ (r \neq 1) \]

が正しいことを確認しましょう。はじめに出てきた

\[ 2,\ 6,\ 18,\ 54 \]

は、初項 2 で公比 3 の等比数列です。この等比数列の和は 2 + 6 + 18 + 54 = 80 です。

では、等比数列の和の公式を使って求めてみましょう。数は 4 つしかないので、n = 4 です。

\[ S_{4} = 2 \dfrac {1-3^{4}}{1-3} \\ = 2 \times \dfrac {80}{2} \\ = 2 \times 40 \\ = 80 \]

となり、等比数列の和の公式が正しいことがわかりました。

(追記中)