Logarithm Properties - Product & Quotient Rule
The most important logarithm properties are product and quotient rules. Many logarithm formulas are derived from these rules.
Formula
(Product Rule) $\log_a xy = \log_a x + \log_a y$
(Quotient Rule) $\log_a \dfrac{ x }{ y } = \log_a x - \log_a y$
In particular
(Power rule) $\log_a x^n = n \log_a x$
The logarithm of the multiplication of real values is the total of the logarithms of the values.
And the logarithm of the division of real values is the difference of the logarithms of the values.
Proof
Reviewing exponent expressions help us to prove the above.
$a^m \times a^n = a^{ m + n }$
Let $x$ be $a^m$ and $y$ be $a^n$.
$x \times y = a^{ m + n }$
And then
$\log_a ( x \times y ) = m + n$
$\log_a xy = \log_a x + \log_a y$
So the rules of logarithm are essentially ones of exponential.
指数・対数関数(数学Ⅱ)
-
指数・対数関数の公式|指数法則と対数法則と底の変換公式の証明
0
94342
-
指数関数は2次関数どころか10000次関数より「強い」
0
6570
-
指数関数の方程式と不等式(解き方と計算問題)
0
7066
-
-
-
2の0乗や3の0乗はいくつになりますか?
0
1229