# Formula. Change of Base (logarithm) – Math

We can recognize logarithms as "fractions of exponential". Multiplying the same number with nominators and denominators, we can rewrite fractions with a different expression. Likewise, we rewrite logarithms with different expressions.

Formula. Change of Base (logarithm)

$\log_a{x}=\frac{\log_b{x}}{\log_b{a}}$

Using that formula, you can change the base of the logarithm and add (or subtract) logarithms with different bases, such as $\log_2 3 + \log_4 5$. So the change of base logarithm formula is the base of calculating logarithms.

## Remark

Before proving the formula, we should understand the below formula.

$(1) \quad a^{\log_a{x}}=x$ $(2) \quad \log_a{x^n}=n\log_a{x}$

## Proof

This proof is a bit technical.

$(\log_a{x})(\log_b{a})\\ =\log_b{a^{\log_a{x}}}\ \ \cdots\ (2)\\ =\log_b{x}\ \ \cdots\ (1)$

Dividing by $\log_b{a}$, we get the formula.

$\log_a{x}=\frac{\log_b{x}}{\log_b{a}}$

## Note

Physics often uses the base 10 and data are usually plotted in log scale charts with the base 10.

• 広告

• 広告

コンピューター
プログラミング

• 目安箱

• Python入門

• 化学入門

• 漢字辞典